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Purgatorio calculates self-consistent bound and continuum electron densities )(bound rρ  and 

)(continuum rρ  in a neutral ion sphere with radius Rion by populating relativistic wave functions P(r) and 

Q(r) according to their statistical weights and the Fermi distribution function f(ε,µ) = (1+e(ε-µ)/τ)-1. 

The chemical potential µ is varied to ensure neutrality: 
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While the free-electron density of states Xideal(ε) = p(1+α2ε)/(π2n) varies smoothly with the electron 

energy, the density of states obtained from the wave functions can include sharp features due to 

quasi-bound resonant states, continuum states with positive energies whose wave functions are fairly 

localized about the ion center.  This quantity is: 

{ })()(d2)( 2
,

2
,

R

0

ion rQrPrX εκεκ
κ

κε += ∫∑  

 

The average ion charge can be computed in several ways. The most straightforward of these is to 

define the ion charge to be the total number of continuum electrons: 
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This definition includes both the electrons in the ideal density of states, which have wave functions 

distributed throughout the material, and the “quasi-bound” electrons in the resonance features. An 

alternative definition – the most reliable for transport calculations – counts only the free electrons in 

the ideal density of states, excluding resonances: 
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Finally, we can define the free electrons to be those on the surface of the ion sphere:  
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This definition largely excludes electrons in continuum resonances but can include a portion of any 

negative-energy bound states that “leak out” of the ion sphere. The electrons on the surface of the 

ion sphere are free to move between ions and can thus be considered extensive.  

 



 

         Table of Z values at melt 

Element Tmelt(eV) ρmelt (g/cc) ZWS Zbackground Zcontinuum 

Al 0.0804 2.385 2.308 1.795 3.00 

K 0.0290 0.77 1.078 1.021 1.00 

Fe 0.156 7.05 2.335 1.527 8.00 

Cu 0.117 7.96 1.955 1.352 11.00 

Ag 0.106 9.45 2.019 1.333 11.00 

Au 0.115 17.36 2.410 1.434 11.00 

Pb 0.0518 10.2 1.797 1.107 2.224 

 


